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Abstract 

The kinetic analysis of any isothermal process is based on compliance with the equational 
form g(~) = kt, which requires an a priori knowledge of the final property change Ap~. It is 
therefore imperative that this equation is not applied to incomplete reactions. A new on-line 
method has therefore been developed here which gives analytical solutions to well known 
mechanisms of reaction without recourse to Ap~. In some cases, where Ap~k appears as a 
product or exponential terms are to be found, computer based numerical methods have been 
adopted to solve the equations. The deciphering of the mechanism and the evaluation of k 
without waiting for the completion of a TG run has been demonstrated with a hypothetical 
TG curve. 

Keywords: Accelerating rate equation; Decelerating rate equation; Kinetic analysis; On-line 
method; Sigmoid rate equation 

1. Introduction 

After  reviewing current  me thods  o f  eva lua t ing  the rate  cons tan t  k and  po in t ing  
out  some o f  the inherent  weaknesses o f  the non- i so the rmal  me thod  [1], a technique 
is ou t l ined  for  the de te rmina t ion  o f  k dur ing  the course o f  an ac tual  i so thermal  
exper iment .  In  i so thermal  kinetic  studies involving at  least one solid phase,  the rate  
cons tan t  is usual ly  represented  by an equa t iona l  form 

g(~) =kt  (1) 

* Corresponding author. 

0040-6031/95/$09.50 © 1995-  Elsevier Science B.V. All rights reserved 
SSDI 0040-6031 (94)02139-2 



330 H.P .  Nawada,  O .M.  Sreedharan/Thermochimica  Acta  255 (1995) 329 340 

Table 1 
Commonly used solid-state reaction mechanisms 

Rate mechanisms g(~)  = f ( k t )  functional form c~ = f ( k t )  functional form 

1. Accelerating rate equations 
Power law E1 ~ TM = k t  ~ = (kt)" 
Exponential law PI In :~ = k t  :~ = exp(kt) 

2. Sigmoid rate equations (nucleation and growth control) 
Avrami-Erofeev A2 [ - l n ( l  - ~)]-1/2 = k t  ~ = 1 - 2 e x p ( - k t )  
Avrami Erofeev A3 [ - ln(1  - :0]-i/3 = k t  :~ = 1 - 3 e x p ( - k t )  
Avrami-Erofeev A4 [- ln(1  - :¢)]-i/4 = k t  :~ = 1 - 4 e x p ( - k t )  

exp(kt) 
Prout Tompkins BI In - -  = k t  :~ = - -  

1 - ~ 1 + exp(kt) 

3. Deceleratory rate equations 
3.1. Based on diffusion mechanism 

One-dimensional diffusion DI ~2 = k t  ~ = x ~ t  

Two-dimensional diffusion D2 (1 - c 0 ln(l - :~) = k t  

Three-dimensional diffusion D3 [1 - (1 ~)1:~]2 = k t  .~ = 1 - (1 - x / ~ )  3 
Ginstling Brounshtein D4 [1 - (2:~/3)] - (1 - ~)2.3 = k t  

Anti-Jander (counter diffusion) [(1 -t-C~) 1 ' 3 -  1] 2 =  k t  c~ = (1 + x / ~ )  3 -  1 

3.2. Based on geometric models 
Contracting area R2 [1 - (1 - ~)1/2] = k t  ~ = 1 - (1 - k t )  2 

Contracting volume R3 [1 - (1 - c¢) 1'3] = k t  ~ = 1 - (1 - k t )  3 

3.3. Based on order of  reaction 
First order F1 - ln (1  - ~) = kt  :~ = 1 - e x p ( - k t )  
Second order F2 1/[1 -c~] = k t  ~ = 1 - l / ( k t )  

Third order F3 1/[1 -c~] 2=  kt  ~ = 1 - l / x / k t  

w h e r e  g(c~) is a f u n c t i o n  o f  t h e  f r a c t i o n  r e a c t e d  a t  t i m e  t a t  a n  a r b i t r a r y  c o n s t a n t  

t e m p e r a t u r e .  

T h e  f u n c t i o n  g ( c  0 c a n  t a k e  d i f f e r e n t  f o r m s  d e p e n d i n g  o n  t h e  t y p e  o f  r e a c t i o n  t h a t  

o c c u r s ,  a n d  s u c h  f o r m s  h a v e  b e e n  r e v i e w e d  b y  B r o w n  a n d  c o - w o r k e r s  [2,3]. A 

s u m m a r y  o f  t h e s e  f u n c t i o n a l  f o r m s  is g i v e n  in  T a b l e  1. O n e  w a y  o f  o b t a i n i n g  k is 

t o  c a l c u l a t e  all  t h e  a v a i l a b l e  f u n c t i o n s  o f  g ( e )  a n d  t o  f i n d  t h e  o n e  w h i c h  g i v e s  t h e  

b e s t  l i n e a r  c o m p l i a n c e  w i t h  E q .  (1).  M o s t  o f  t h e  m e t h o d s  so  f a r  r e p o r t e d  in  t h e  

l i t e r a t u r e  m a k e  u s e  o f  e ,  w h i c h  is t h e  f r a c t i o n  c o n v e r t e d  a n d  is m e a s u r e d  b y  m e a n s  

o f  a n y  p r o p e r t y  p t h a t  c h a n g e s  l i n e a r l y  a n d  c o n t i n u o u s l y  w i t h  t h e  r e a c t i o n  d u r i n g  

t h e  c o u r s e  o f  a n  i s o t h e r m a l  e x p e r i m e n t  a s  a f u n c t i o n  o f  t i m e .  T h e  p r o p e r t y  c h o s e n  

m u s t  b e  s u f f i c i e n t l y  s e n s i t i v e  t o  r e p r e s e n t  t h e  c h a n g e  o f  t h e  s t a t e  a n d  m u s t  be  

l i n e a r l y  p r o p o r t i o n a l  t o  t h e  n u m b e r  o f  r e a c t a n t  o r  p r o d u c t  m o l e c u l e s .  I n  t h e r m a l  

a n a l y s i s ,  s u c h  a p r o p e r t y  w h i c h  is m o n i t o r e d  a s  a f u n c t i o n  o f  t i m e  c a n  b e  a n y  o n e  

o f  t h e  f o l l o w i n g ,  viz. :  t h e  i n s t a n t a n e o u s  w e i g h t  d u r i n g  t h e r m o g r a v i m e t r y ,  t h e  

i n t e n s i t y  o f  a c h a r a c t e r i s t i c  l ine  in  h i g h  t e m p e r a t u r e  X - r a y  d i f f r a c t o m e t r y ,  t h e  

e n t h a l p y  in  d y n a m i c  c a l o r i m e t r y ,  t h e  v o l u m e  in  t h e r m o m e c h a n i c a l  m e a s u r e m e n t ,  o r  

t h e  p h y s i c a l  d i m e n s i o n  in  d i l a t o m e t r y .  T h e  t e r m  ~ is g e n e r a l l y  d e f i n e d  b y  
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I(p,-po)l Ap, 
= I(P~ -p0)l  Ap~ (2) 

where p, is the value of  the property at any instant of  time, P0 is the value of the 
property at the initial time, and p~  is the value of the property after infinite time 
(symbolizing completion of the reaction). 

In general, the methods of kinetic analysis are based on the very definition of ~. 
That  is, one can compute the fraction converted only with the knowledge ofp,~ after 
completion of the reaction. Quite often one comes across situations where reactions 
in a solid medium seldom proceed to completion for a variety of  reasons, such as 
low temperature and limitations in the solid-state transport processes. Such reac- 
tions designated as incomplete reactions are therefore unsuitable for the determina- 
tion of  kinetic constants because of their dependence on the numerical value o f p ~ .  
However, the present trend of  computer based automation-cum-data processing 
could facilitate the determination of kinetic constants, even without recourse to the 
value o f p ~ ,  if the mathematical solutions could be suitably reformulated. The steps 
involved in such an approach are described in this work, along with its application 
to a numerically simulated T G  curve for the purpose of illustration. 

2. Mathematical formulation 

Eq. (1) above can be rewritten as 

= f ( k , t )  (3) 

and various g(~) equational forms listed in Table 1 correspond to different 
mechanisms. For  two distinct instants of  time t~ and t2, Eqs. (2) and (3) yield 

7,, = Ap,x /Ap~ = f ( k , t O  (4) 

cq2 = Ap,2/Ap ~ = f ( k ,  t2) (5) 

The ratio of the weight changes R is obviously given by the ratio of  cq~ and 7,2 

R = Ap , /Ap2  = f ( k , t , ) / f ( k ,  t2) (6) 

Eq. (6) can be solved algebraically for k for the different mathematical forms of  
g(~) in Table 1, and such solutions are summarized in Table 2. It should be noted 
at this juncture that, for all except a few of the mechanisms, the algebraic solutions 
could be found in the present study. 

The exceptional cases are mainly those mechanisms based on nucleation and 
growth, such as Avrami Erofeev equations, which have exponential terms render- 
ing algebraic solutions difficult, if not impossible. However, the numerical solution, 
viz., the N e w t o n - R a p h s o n  approach, can be employed for elucidating the roots of  
Eq. (6) when an analytical route is not feasible. A brief description of this iteration 
method, along with initial guessed values, are given in the Appendix. In addition, 
the rate equations based on a power law, such as c~ ~/'' = kt ,  cannot be solved for an 
exclusive k. Instead, the algebraic roots lead to n, the power law exponent, and k" 
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Table 3 
Numerical values of hypothetical TG curves chosen for Figs. 1 and 2 

333 

Time/s Delta W (A W) values for 

Fig. 2 Fig. 1 

10 1.3216 0.2151 
70 3.2341 1.4117 

130 4.2075 2.4619 
190 4.9025 3.3838 
250 5.4482 4.1929 
310 5.8977 4.9030 
370 6.2789 5.5263 
430 6.6086 6.0734 
490 6.8980 6.5536 
550 7.1546 6.9751 
610 7.3942 7.3450 

Note: AW~ = 10.0000. 

multiplied by Ap~, as is pointed out in Table 2. Further, some of the equations 
which are based on diffusion controlled mechanism (viz., the Ginst l ing-Broun-  
shtein equation D4 and two-dimensional diffusion D2, have defied all our attempts 
at solution for their roots. Perhaps the following polynomial approximation 
suggested by Bar-Gadda [4] may lead to solutions of  the D4 and D2 equations. 

2.1. Evaluation o f  k with numerical simulation 

Two hypothetical T G  curves as given in Table 3 are taken for testing the 
analytical solutions listed in Table 2. Both the approaches developed in the earlier 
section, viz., those of  analytical solutions and numerical methods, have been 
applied to the different models and the values of  k have been computed as a 
function of  time. Typical results of  such computations are presented in Fig. 
l (a)- (d) .  In the case of  the mechanism that is operative for the reaction under 
investigation, k has to be independent of  time. I f  k does not have a constant value, 
this indicates that the mechanism under consideration is not operative. In addition 
to these two distinct categories, possibilities exists for marginal variation of k with 
time, which makes it difficult to select between the two options (see Fig. 2(a)-(d)).  
Under these circumstances, one resorts to the computat ion of  e and Ap~ using the 
derived values of  k. A cursory look at the values of  e and Ap calculated thus will 
usually reveal the acceptability or otherwise of the mechanism being considered. 
This point is illustrated with the help of  Table 4. It is obvious that values of  e that 
are either greater than unity or negative and those values of  Ap~ noncomparable  in 
magnitude to the values of  Apo or nonconstancy of Ap~ are untenable. It is thus 
easy to reject the mechanisms that have given rise to such k values. 

In this manner,  numerical simulation has been carried out on all fourteen 
mechanisms, and it is found that the present on-line method can be readily adopted 
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C o m p u t e d  r a t e  e o n s t a n t  k ( 1 E - 4 )  F3 
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Fig. 1. (a), (b). 

\ 
\ 
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~ ÷ ~v,am,-Ero,eev A3 
~ ~ - ~  ~vrami-Ero,eev A4 
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Time in seconds 
c The computed k for Prout-TompkLns 
mechanism is only approximate value. 
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Computed rate constant  k (1E-4) D3 
0.03 

335 
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Power law e x p o n e n t  n 

Power law 
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Power law e x p o n e n t  n is 

1/n 
(alpha) • kt 

Fig. l. Illustration of the method for generation of the rate constant k vs. time t using the data of  the 
hypothetical TG curve (Table 3), which is following the F1 reaction mechanism for various reaction 
mechanisms: (a), based on reaction order; (b), based on nucleation and growth; (e), based on diffusion 
and geometric models; (d), based on accelerating rate expressions. 
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Computed rate constant k F1 (E-8)  
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Fig. 2. (a), (b). 
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C o m p u t e d  rate c o n s t a n t  k Jande r  & Ant i  Jande r  1E-4 
3 

0.02 

0 .015  

0.01 

0 .005  

0 
0 

(c) 

- ~ -  Contracting Area R2 

Contracting VolumeR3 

- ~ -  Jander Diffusion D3 2.5 
- ~  Anti Jander Diffus 

1.5 

i I I I I 1 

100 200 300  400  500 600  

Time in seconds 

C o m p u t e d  k for  A c c e l e r a t i n g  Rate eqns  
1.2 

E1 
0 .035  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

d) 

~ Power Law P1 

~ Exponential law E1 

\ 

0 I I I I 

0 100 200 300  400  
T ime in s e c o n d s  

0.03 

0 .025  

0.02 

0 .015  

0.01 

0 .005  

I = 0  

500 600  

Power Law Exponent n is 
1/n 

( a l p h a )  - k t  
Fig. 2. Plot of  computed rate constant  k as a function of reaction time t for the hypothetical TG curve 
which is following the D3 reaction mechanism, which exhibits marginal variation of  k with time for 
certain reaction mechanisms among various reaction mechanisms: (a), based on reaction order; (b), 
based on nucleation and growth; (c), based on diffusion and geometric models; (d) based on accelerating 
rate expressions. 
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to clarify the mechanism that is operative in the condensed phase reaction with- 
out waiting for the completion of the reaction. 

3. Application of on-line method to real TG curves 

The foregoing discussion on numerical simulation has been restricted to a 
hypothetical TG curve instead of a real one. Nevertheless, the on-line method can 
be readily adapted to real experimental TG curves if the following precautions are 
taken. 

(a) The weight record should be devoid of apparent weight changes, as achieved 
by suitable incorporation of blank corrections during the TG  run itself, in order to 
derive the full benefit of  the on-line method. It must be mentioned that the zero-time 
corrections should be also carried out a priori so that the initial weight change Apo 
is free from error. A mathematical method for correcting zero-time errors during the 
course of the isothermal experiment itself is under development [5]. 

(b) The weight record should be a sufficiently smooth one, free from fluctuations, 
as could be attained by incorporation of computer programs based on Fourier 
analysis; otherwise, erratic values of k might be obtained. 

Even though the above method is applicable for any isothermal experiment, in 
general thermogravimetry constitutes a major field of activity for high temperature 
solid-state kinetic studies, which in turn encompass many high temperature factors 
(e.g., compatibility, decomposition, corrosion, preparation, degradation etc.). Ap- 
plication of the above method to experimental techniques other than ther- 
mogravimetry should be possible provided that the change in the relevant property 
is smooth and devoid of "apparent"  changes, and also free from zero-time errors or 
with the possibility of in situ correction of such errors. 
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Appendix: Newton-Raphson method of finding the root 

Consider x = xl as a known rough approximation to a root o f f ( x ) =  0. Suppose 
that the exact root is at x = x~ + h, so that f(x~ + h ) =  0. As h is a small value 
compared with x, by Taylor's expansion 

f i x ,  + h) = 0 = f i x , )  + hf(Xl) + h2/2~"(x,) + ... 

Neglecting terms in h 2 and other higher order terms results in 

h ~ - f ( x O / £ ( X l )  
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Table A1 
Initial approximate roots for various mechanisms which depend on the Newton Raphson method for 
the solution of the rate constant k 

Mechanism Initial root k for iteration purpose 

(1 - R )  
A2 k = - -  

2(t 1 - Rt2) 
(1 - -  R)2 

A3 k = - -  
3(tj - Rt2) 

(1 - R)3 
A4 k = - -  

4(t I - Rt2) 

(Rt  2 - t I ) 
R3 k = - -  

(Rt~ -- t~) 

B1 t2(t I - t2)k 2 + (2t I - Rt  I - t2)k + 2(1 - R) = 0 

Note: the above equations are not analytical solutions for the rate-constant, since they are obtained 
by ignoring some terms (higher order terms in expansion). 

w h e r e  f ( x l )  is t he  v a l u e  o f  t he  d i f f e r en t i a l  coef f ic ien t  o f  f ( x )  a t  x = x~. C o n s e -  

q u e n t l y ,  a s e c o n d  a p p r o x i m a t i o n  to  t he  r o o t  is 

f ( x )  
x 2 =  x l  + h =  x l  f ( x l )  

T h i s  a p p r o a c h  m a y  be  u s e d  i t e r a t i ve ly  fo r  i m p r o v i n g  t he  a p p r o x i m a t e  r o o t  to  t he  

de s i r ed  d e g r e e  o f  a c c u r a c y .  T h e  in i t i a l  a p p r o x i m a t e  r o o t s  f o r  i t e r a t i o n  p u r p o s e  fo r  

t he  r a t e  m e c h a n i s m s  t h a t  a re  c o n t r o l l e d  b y  n u c l e a t i o n  a n d  g r o w t h  a re  g i v e n  in 

T a b l e  A1.  
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